Monthly Archives: March 2014

Writing Hard Sci-Fi Stories

MILTON3 This is the final in the LTUE 2014 seriesĀ 

Putting “hard science” into a story isn’t has hard as it sounds. The key is figuring out the ramifications of your neat invention or premise. If you have thought those out well, then your story will be consistent and have some “that’s neat!” stuff in it that will impress readers.

Here is a mundane example of thinking through ramifications: Imagine…

o Your character invents chewing gum.

o OK… this is a food, you put it in your mouth like you do jelly beans.

o But unlike jelly beans you have waste, something you don’t want to swallow. (Well, some of us don’t.) This aspect of gum chewing makes it more like eating a banana than jelly beans — you have something to throw away.

o So you’ll need a wastebasket of some sort.

o But… unlike a banana peel ABC chewing gum (Already Been Chewed) is soft, sticky and a small item.

o Voila! A surprise use of the technology. You can dispose of it by sticking it to the underside of a table. Your chewing gum inventor is unlikely to have thought of that use!

This is an example of thinking through the ramifications of a new invention. This process requires inventive and observational expertise — also known as common sense — more than deep theoretical expertise.

I’ll say it again: widespread experience helps with this style of adding science to a story. As you go through life, watch for the neat and unexpected ways people use things. Mixing and matching diverse experiences helps a lot.

Here are some personal examples:

o In 2006 I wrote science essay on why the surface of Venue is so hot: It is simply because the atmosphere is so thick, which makes is so dense at the surface. I came up with this explanation based on some pure physics learned in high school and college (the Ideal Gas Law), mixed with some Hollywood movie hokum, and some practical experience gained by learning to fly airplanes. In 2004 I watched the movie Day after Tomorrow and its portrayal of stratospherically-cold air coming to Earth’s surface. “Hah!” says I while I’m watching, “I’m a pilot. And one of the things I learned in pilot school was that air heats up as it moves to lower and lower altitudes because it is compressing.” So the movie didn’t work for me… but some time later I read an article about Venus in which a scientist proclaimed that runaway Greenhouse Effect was causing the high heat. Nope, I didn’t buy that either, but it stimulated more thinking about Venus… and out came my article.

o I wrote a short story about adventuring in the Ooze Zone of Neptune. (my term) This story started as a personal challenge: How to write some kind of story about people actually doing something in a gas giant’s atmosphere? It took a lot of thinking, but the “Ah-Hah” was realizing that the gas giant’s atmosphere changes from gassy to solid without changing its composition. Example: The interior of Jupiter is mostly metallic hydrogen. The “Ah-Hah” here is that if the top is gaseous hydrogen, and the bottom is metallic hydrogen, there must be a transition layer in between… the Ooze Zone. I then began thinking about what the properties of this Ooze Zone would be. This became the basis for a short story, Pressure Point, in my book The Honeycomb Comet.

o In my short story The Failure I speculate on how cyber beings may first be created: It will happen by accident, and after they are created they will say “Thanks. Bye now!” to mankind and move on to face their own problems and challenges. I came up with this idea by observing the relation between humans and cows, and by imagining what this relation looks like from the cow’s point of view. (that story is here)

These are three examples of how hard science can produce some neat story ideas. The key is wide observation of the world around us, adding some mixing and matching from those wide observations, and then carefully thinking through the ramifications of those mixes and matches. It is the ramifications that will reveal the surprises uses of the technology, and that is start of your really neat story.

Note that when I say something took a lot of thinking, I don’t mean sitting in front of the keyboard waiting for inspiration. When I’m doing a lot of thinking in this sense it means I have this question stored in the “Unsolved Mysteries” file in my brain. I think about these as I walk around, and eat meals, and watch and learn new things. As I’m doing these things, pieces fit together, patterns emerge, and one-by-one some of the unsolved mysteries become solved. And when that happens, then I gleefully hit the keyboard about them.

Here is an upcoming example of what I’m thinking about now, but haven’t written about yet: driverless cars. What difference will driverless cars make to how we live? Based on how the role of cars has evolved in my lifetime, I forecast that car ownership will change dramatically. We will switch to a mostly taxi culture instead of a mostly ownership culture. If a car can simply drive up and carry you away, why bother with such nuisances as finding parking, worrying about maintenance, and even learning to drive? Driverless will be changing how we live, and how we relate to our cars.

And when that change happens, there are further ramifications — surprises. Example: movies about driving cars will take the cultural role that cowboy Westerns did in the mid-20th century. Much more Fast and Furious, anyone? This genre will become cultural nostalgia. There will be change, but there will also be familiarity — driving up and walking into a wild party will replace riding up and walking into a saloon.

The biggest advantage of incorporating more hard science into your stories is that it will take them into strange new realms. If you stay consistent with your premise your story will be different from those previously told. That is because science changes how we live. If you mix in hard science, and think through the ramifications, your characters are going to have to change how they live, and you will have a story that is breaking new ground.

Sometimes incorporating hard science can be hard, real hard. Example: SF writers in the Golden Age rarely wrote about communication revolutions because when communication is too good, people look so silly when they make the mistakes that are common story devices, such as, “I heard a strange noise in that dark room. I’m going in.” Look at a lot of Spielberg’s stuff. (the Jurassic Parks come to mind) Notice that he will often add a story device early on that isolates his characters — they can’t get on the phone or radio and call for help or advice.

I’ve written a lot more on incorporating hard science in my book Science and Insight for Science Fiction Writing. Take a look at the book.


Leave a comment

Filed under Uncategorized

Dealing successfully with originality in stories

fv-bridgeThis was presented at the LTUE 2014 writers conference.

Originality is defined as the ability to think independently and creatively. Another way to put this is: To come up with a new story idea or putting a new twist on a familiar story format.

Originality is praised, but there is a conflict surrounding it that must be recognized: The heart of story telling is to talk about familiar things. If an idea is too original the prospective audience will think, “Huh?”, and move on to something more quickly understandable. So originality that is popular has a lot of familiarity mixed in.

This necessary combination explains a mystery that vexed me for years: When new technology is introduced into something like a business or manufacturing process, the result will be new and surprising ways of doing things. When new technology is introduced into an entertainment process, the result will be the same old stories told with different bells and whistles.

The importance of familiarity is the key to this difference.

That said, let’s talk about how to be original.

The challenge in creating original stories is where to mix in the original.

o The originality in Tolkien’s work is his meticulous building of back story — everything has a history. The familiar is the characters working through this rich world he has developed. The hobbits are nice, polite people who are good observers.

o In 1940’s Golden Age science fiction the original was exploring new worlds and new technologies. The familiar was the characters encountering these situations.

o In 1960’s Star Trek the original was introducing characters with different ethnic backgrounds and new roles for authority figures — Kirk is not a “yessir!” military captain. The familiar was the situations they encountered on their strange new worlds.

o In early Harry Potter books (1990’s) the familiar is the British middle school setting. The original is adding magic. In the later stories the familiar is the main characters and Hogwart’s setting. The original is the quirky new teachers and administrators.

o In the 2010’s Swords and Sorcery genre the familiar is the monsters. The original is the gender roles. Conversely, in the Twilight series the familiar is the lead damsel character and the original is the friendly sparkly vampires.

The key is mixing familiar and original. And keep in mind that what mixes will work and what won’t are still unpredictable. …Sparkly vampires, you say?

Leave a comment

Filed under Uncategorized

Xenobiology 101

Glen-canyon-02Note: I presented these thoughts at the 2014 LTUE sci-fi con.

First, a definition: Wiki link:

The search for alien life, xenobiology, has changed a lot over the last century. In science fiction it has changed from John Carter adventuring among the various colors of “men” on a civilized Mars to Curiosity and Opportunity exploring a currently dry, barren planet surface that may have had water billions of years ago, and even more maybe, some kind of life.

The search for life on other worlds can be broken into two broad categories: searching for where humans can thrive (terraforming) and searching for what other life systems are out there (xenobiology).

At this stage it seems that carbon-based life occupies a distinct niche in the universe of life-making possibilities. It is hugely prolific in terms of both amount and variety of materials involved and the complexity of what can be created with it. There don’t seem to be any systems that are “sort of like it, but not the same”, such as silicon-based life or life with chlorine gas as the oxidizer rather than oxygen.

There may be other, way more different, styles of making life such as some kind of life living in solar plasma, but if they exist these are so different they are hard to identify and would be even harder to communicate with. Solar plasma life, for instance, would likely have a life span of milliseconds rather than years because things move around so fast and energetically in plasma.

Given all of the above big issues, where are we likely to find life we can identify?

Searching for life means searching for anomalous relations in energy flow. Example: Oxygen gas is highly reactive. It’s not going to exist for long in any environment that has large quantifies of reducing agents available, such as carbon, hydrogen or metals. The fact that Earth’s atmosphere has a lot of native oxygen in it is a sign that something is “pushing” the atmosphere and surface chemistry of Earth into an odd state, and has been doing that pushing a long time and pushing hard. That pushing is life. If we see other environments where the flow of entropy is being locally reversed in a dynamic way, as Earth’s atmosphere is, that’s a place to be looking for life. However, entropy and free energy flows are not quick and easy to measure, so this kind of research takes time.

And most life is not likely to be a prolific as Earth’s life is. The more likely version will resemble life around thermal vents deep in the oceans. It will be sparse and simple, which will make it hard to locate. Searching for life on the average planet or moon will be like prospecting for gold on Earth.

In sum, the search for xenobiology is not going to be an easy one.

For more information check out my two essays Special life-creating things about the Earth and Another Miracle of Life on Earth: Its Magnitude. Both of these are also in my Science and Insight for Science Fiction Writing book.


Leave a comment

Filed under Uncategorized

The Curse of the Jungle/Ice/Desert Planet

three-ladies-01Golden Age Planets

Frenchman Jules Verne’s writings started coming to America in the 1850’s. These started out as adventure stories about visiting exotic places on earth using futuristic traveling technology. They were popular and the technology of the stories and locales visited steadily got more exotic. With the popularity of these stories as an inspiration, other writers started using exotic travel technology to visit other planets and describe their exoticness. Thus began science fiction’s rise as a popular genre.

In the 1890’s and 1900’s astronomy was thriving as telescopes were getting bigger and better. Instead of just dim points of light in the sky planets became blurry images. (Crystal clear wasn’t going to happen as long as one had to look through earth’s turbulent atmosphere. This is why stars twinkle.)

One person who jumped on this astronomy bandwagon in a high-profile way was Bostonian Percival Lowell. He pushed the trend along by building bigger telescopes in the clear, thin, dark air atop the high mountains in Arizona — a lonely place in those days. From these he personally spent hours and hours observing Mars over many years, and popularized the idea that Mars was covered with canals — as he called them — that may have been built by civilized beings — he further speculated. His speculations fired the science fiction writing about ancient civilizations on Mars that became part of the Golden Age of science fiction writing — the 1930’s-50’s. These Golden Agers were not the first, H. G. Wells, for instance, wrote War of the Worlds in 1897, but they were prolific and built up a standard. Edgar Rice Burroughs’ John Carter of Mars first appeared in 1912, and the series that followed became an icon of the civilized Mars concept.

And, if Mars could have alien beings, why not other planets? Venus quickly joined the parade. Because it was Earth-sized and totally white cloud covered, sci-fi writer logic called for it to be a jungle planet.

Astronomers of the 1920’s, with physicists watching over their shoulders, observed more, deduced more, and determined that the other planets were not nearly as hospitable. The gas giants were too big and too cold, Mercury was too small and too hot, and the Moon was airless, waterless and had nothing resembling Martian canals. That left the big three — Venus, Earth and Mars — plus yet-to-be-observed planets around other stars.

Then in the 1960’s astronomical harsh reality got really harsh. With radar observing Venus’ surface, satellite telescopes observing all the planets from above the atmosphere, other satellites flying close by the planets, and one or two landing on the surfaces of Venus and Mars, it became real clear that neither Mars or Venus was currently harboring civilized life, or any kind of life, and the Golden Age for space stories was over. All that was left was Star Trek with its totally imaginary Warp Drive as a way to get from star to star quickly.

But it turns out the desire for space stories on distant planets is still strong. And given that, what can be said about these three styles of worlds?

World Benefits

Each of these world styles offers different setting benefits to the story teller.

Staging a story on a desert world has the benefits of simplicity and visibility. Life is simple on the desert world — keep moving and find water — and little is hidden in the clear air and endless vistas. A close cousin of the desert world is the post-apocalypse world. This is another style of world where simplicity is the virtue.

Conversely, hiding things is the biggest benefit of a jungle world. How many stories in jungle settings have held a “lost city”? (Or if the writer is on a low budget, a lost mine.) Jungles are all about losing things.

Ice worlds offer interesting architecture — things such as glacier crevasses, ice caves and ice palaces. They also offer exciting geodynamics — crashing cliffs and avalanches and hopping across floating ice chunks.

The disadvantages to all of the above is they are cliches — they have all been done many, many times.

Here are some suggestions for moving beyond these common uses:

Desert worlds reveal easily, so have them reveal interesting things. This can be interesting geology of various sorts, such as the climate used to be different, or culture was different. On a desert world military maneuvers can be seen on a grand scale, and the culture being fought over is likely to be simple and sparse. An example in real life is the fun writers have had with the North African campaigns of World War II — featuring German general Erwin Rommel, the Desert Fox, and Bernard Montgomery his British nemesis.

In addition to hiding things, jungles offer complexity. This is a setting where interactions between living things is complex and that can produce neat surprises. I’ve seen just two stories take advantage of this, and I liked them both. One was Symbiotica written by Eric Frank Russell in the early 1940’s, and the other I can’t remember. Use a jungle setting to reveal variety in lifestyles and interesting interdependencies, as in, ecology stuff. Having living styles that aren’t taking place in cities, lost or otherwise.

Ice worlds can be settings for “Journey to the center of the earth”-type stories. It’s much easier to have extensive ice caves and to build ice tunneling machines than it is to do so in hard rock.

21st century exotic planets

Now, in the 21st century, astronomy has advanced even more. And… we can now detect, and in some cases even barely see, the planets of other star systems! We have broken the eight planet barrier. Yay! This means we SF writers can once again be seriously speculating about what other planets are like. (Here is an 11 Jan 14 Economist article, Planetology comes of age, discussing the state of the art in 2014.)

But we don’t have to wait or go that far away to see good examples of other exotic world styles. It turns out the larger moons of the gas giants are ice worlds on the outside, and some may be liquid on the inside. One of the more exotic is Titan, the moon orbiting Saturn. Titan is an ice world with a thick atmosphere. Ice worlds with thick atmospheres that are not gas giants are not common. Titan is the only planet/moon in the solar system with this combination. The large moons of Jupiter are icy, but don’t support thick atmospheres. The planets Neptune and Uranus are icy but so pressurized deep down that the structure of the materials changes. The common compounds, such as water ice, phase shift into exotic forms. These will be very difficult for humanity to interact with using the materials we know of today. Conversely, on Titan the ice is water ice as we know it, the atmosphere is nitrogen plus organic smog, and it supports liquid ethane/methane lakes at its poles. This is exotic, real, and with quite possible real-world technology, it can be human inhabitable.

Leave a comment

Filed under Uncategorized